Graphing Trigonometric Functions

Level:

College Preparation Mathematics

Goal: To become familiar with Microsoft Excel and the Chart Wizard in order to create graphs the Trigonometric Functions

Learning Outcomes:

- Use a spreadsheet to construct a table of values
- Use the Chart Wizard to create graphs of Trigonometric Functions

Contents

- Constructing a Table of Values Using Microsoft Excel
- Entering Formulas onto a Spreadsheet
- Using Chart Wizard
- Saving the Spreadsheet
- Practice Assignments

Prerequisite:

Spreadsheet Mathematics: Statistics and Graphing Lab 1:

Entering, Formatting and Saving Data in an Excel Spreadsheet

Acknowledgements:

All screens captured by permission of Microsoft

Graphing Trigonometric Functions

We will plot the following Trigonometric Function using Excel and Chart Wizard

$y = \sin q$ for q from 0° to 360°

Step 1: Construct a Table of Values Using Microsoft Excel

Open an Excel spreadsheet.

In cell A1, enter **Degrees** This is the **header** for the \mathbf{q} values or the degrees from 0° to 360°. In cell B1, enter $\mathbf{y} = \sin \mathbf{q}$. This is the **header** for the corresponding \mathbf{y} values.

For the equation y = sin q you will select the values for q and Excel will calculate the corresponding value of y

When you plot the graphs by hand on graph paper, you have to do the calculation for the value of **y** yourself.

We will pick a range of values for **q**. In this example, the **range of values for q** are 0° to 360°. We will enter this range in a spreadsheet.

So starting at A2, enter 0°, 15°, 30°. Now highlight A2, A3, A4. Then at the black square on A4 drag down column A until you reach 360. This should be at A26. This gives you a Table of Values for q from 0° to 360°

Step 2: Enter a Formula to convert Degrees to Radians

Excel will calculate the sin ratio for the angles from 0° to 360° , but we must change the degrees to radians.

We know from our study of Trigonometry that radians is another way to measure rotation of an angle.

180° is equivalent to π radians = 3.14 radians

 360° is equivalent to 2π radians = 6.28 radians

90° is equivalent to $\frac{\mathbf{P}}{2}$ radians = 1.57 radians

If we **enter a formula** in the **B column** of our Excel spreadsheet, we can convert degrees **in A column** to **radians**

Remember when you converted angles measured in degrees to radians in the Trigonometry

module. There, you used the conversion factor $\frac{P}{180^{\circ}}$ to convert degrees to radians

Example:

Convert 30° to radians

However, in Excel we can simply enter the formula: = Radians() in Column B and then drag the formula down column B in order to copy the formula for each degree value. Of course, the **Degrees** are found in **column A**. The first degree, **0°**, is in **A2** So, the formula we enter is =**Radians(A2) Hit Enter**

See the resulting screens on the following page:

Then, we will drag the formula down column B to convert all the degrees to radians.

You can round off the radians in Column B to 2 decimal places by" Clicking on Column B (Click right on the B ... this selects the column) Selecting Format from Toolbar: Next Select Cells Next Select Number and under decimal places, select 2 Click on OK

Now, the radians column B has been rounded off to two decimal places

Now would be a good time to Save your spreadsheet. Select **File** from Toolbar, then select **Save as** You might want to call the file : **Graphing Trig Functions** Save the file on your Floppy disk From now on you can **Save** by Clicking on the **Save icon** (little disk) on the **Toolbar**

Step 3: Find the Sine Ratio for the Radians in Column B

We can enter a formula so that Excel will calculate all the sine ratios for our range from 0° to 360° or 0 radians to 2π radians (6.28 radians) Heading for Column C is $y = \sin q$

In column C, enter the formula: **= SIN(B2).** Then drag the formula down Column C. Select Format from the Toolbar, then Cell and then round off Column C to 4 decimal places.

The screen you will see is:

\mathbf{N}	66 F	und Court														
15	File Edit	View Insert	Format Too	k Data	Window	v Heln										
							- 2004	-	c 41	21	40- 20		40001			
JL		⊜ L. 7	∦ @ ≣		RD A (× - 8		Σ	J≈ 2.	⊼¥	M 8	49	100% •	80		
Ar	al	• 10	• B	ΙU		: III 🖬	\$	%	,	8 ;08	使母	e 😐	- 🕭 -	<u>A</u> -		
	D6	•	=					1								
	A	В	С	D		E	<u> </u>	Curren	ncy Style		Н			Ы	K	
1	Degrees	Radians	y = sin O.													-
2	Ō	0.00	0.0000													
3	15	0.26	0.2588													
4	30	0.52	0.5000													
5	45	0.79	0.7071													
6	60	1.05	0.8660													
7	75	1.31	0.9659		_											
8	90	1.57	1.0000													
9	105	1.83	0.9659													
10	120	2.09	0.8660													
11	135	2.36	0.7071													
12	150	2.62	0.5000													
13	165	2.88	0.2588													
14	180	3.14	0.0000													
15	195	3.40	-0.2588													
16	210	3.67	-0.5000													
17	225	3.93	-0.7071													
18	240	4.19	-0.8660													
19	255	4.45	-0.9659													
20	270	4.71	-1.0000													
21	285	4.97	-0.9659													_
22	300	5.24	-0.8660													
23	315	5.50	-0.7071													
24	330	5.76	-0.5000													-
• •	▶ N \Sh	eet1 / Sheet2	2 / Sheet3 /	/]	4					
Rea	ady														NUM	
Start Wicrosoft Word							N 🕏 🖗 🗖 🕫	B 11:30 AM								

We will now go on to producing a graph of **y** = **sin q** using Excel Chart Wizard

Step 4: Use Chart Wizard in Excel to Graph y = sin q

To make the Graph, you will need to Select Column A and Column C on your spreadsheet.

X Microsoft Excel - Graphing Trig Functions.xls _ 8 × 🕙 File Edit View Insert Format Iools Data Window Help <u>- 8 ×</u> □☞■●집♥ 兆 睧 隠ダ い・? * ⑧ ♥ Σ ≉ 卦 ↓ 觚 雙 秒 100% • 刻 Aria • 10 • B I U 三三三四 \$ %,%。保 律 🗄 • 🕭 • 🛆 • y = sin 0 А Degrees 0 15 30 45 60 75 90 105 120 135 150 165 150 165 210 225 240 225 270 255 270 285 300 Radians v = sin 00.00 0.0000 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0.52 0.79 1.05 0.500 0.866 0.8660 0.9659 1.0000 0.9659 0.8660 0.7071 0.5000 0.2588 1.31 1.83 2.09 2.36 2.62 2.88 3.14 3.40 3.67 3.93 0.0000 -0.5000 -0.7071 4 1° -0.866 -1.000 -0.866 ЪĖ 11 I I I I I She Sum=4500.00 NUM Start Microsoft Word Microsoft Excel - Gra... N 🕏 🖗 🗔 🕫 11:58 AM

To do this, **Click on Column A** and then <u>holding down</u> Control (**Ctrl**), Click on **Column C**. This selects the two columns that you want to use for the graph.

On the Excel Toolbar, select the **Chart Wizard icon**, then Select **XY(Scatter) Chart Type** and choose the **Third Chart Sub-type.** This the screen you will see

Now, Click on *Next*>. You will see the graph as on this next screen.

<u> </u>	licros	oft E:	kcel - Grapt	ning Trig	Functions.xls							_ 8 ×
8	Eile	Edit	<u>V</u> iew <u>I</u> nsert	Format	Chart Wizard -	Sten 2 of 4 - Ch	art Source Data		? ×	1		_ 8 ×
10	p 2		a d. V	ХĒ		1				2		
Ari	al		-		Data Range	Series						
]]			.				y=sin 0					
			B		1.5000 т						K	
1	Deal	rees	Radians	v = si	1.0000						IX.	<u>▲</u>
2)	0.00	0.00	0.5000							
3	1:	5	0.26	0.2	0.0000				a sia 0			
4	3(0	0.52	2 0.50	-0.5000	50 100 150	200 250 300 25	4 00 <u></u>				
5	4	5	0.79	9 0.70	-1.0000		\searrow					
6	6	0	1.0	5 0.86	1,0000							
7	7	5	1.3	0.90	1.5000 #							
8	91	U	1.5	1.00								
9	, IL - 10	15	1.8.	5; U.9t	Data range:	=Sheet1!\$A\$1:\$	A\$26,5heet1!\$C\$1:	\$C\$26	<u>k</u> .			
10	12	20	2.03	0.00		-			_			
12	15	in i	2.50	2 0.70	Series in:	C <u>R</u> ows						
13	16	15	2.8	0.3		Columns						
14	18	30	3.14	0.00								
15	19	95	3.40	-0.2								
16	21	10	3.6	-0.50								
17	22	25	3.90	-0.70								
18	24	40	4.19	9 -0.86								
19	25	5	4.4	-0.98		L		. 1				
20	27	0	4.7	1.00	<u>_</u>	Cancel	< <u>B</u> ack N	ext >	Finish			
21	20	15	4.9	-0.96								
22	- JL - 31	10	5.24	-0.00	221							
24	33	in i	5.76	-0.50	100							
1	► FI	∏\Sh	eet1 / Sheel	2 / Shee	13 /			•	· ·			l DÉ
Poir	nt							6um=4500	.00		NUM	
	Start	BY N	dicrosoft Wor	1	Microso	ft Excel - Gra				N	2000	3 12:06 PM

Click on *Next>*. Chart Title should already be there **y** = **sin q** For **value (X) axis**, type in the label **Degrees**. For **value (Y) axis**, type in label **sin q**. These labels will appear on the graph

🗙 Microsoft Excel - Graphing Trig Functions.xls	_ 8 ×
🕙 File Edit View Insert Format Iools Data Window Help	_ 8 ×
□ ☆ 目 毎 ほ ♡ X № 良 ダ い・い・ 急 管 Σ た 外 烈 M ♥ 移 100% • 図	
	J K L
1 Degrees Radians V = Sin U	
A 30 Chart Wizard - Step 3 of 4 - Chart Options	
5 45 C Titles Axes Gridlines Legend Data Labels	
6 60 1 Chart Mar	
7 75 1 y= sin 0 y= sin 0	
8 90 1 1 5000	
9 105 1 Value (X) Axis	
10 120 2 Degrees	
11 135 2 Value (Y) axis: 0.5000	
13 100 2 Second category (X) axis: -0.5000	
16 210 Second value (Y) axis: 1,5000	
17 225 3 Degrees	
18 240 4	
19 255 4	
20 270 2 2 Cancel < Back Next > Einish	
21 285 4	
22 300 5.24 -0.8660	
23 315 5.50 -0.7071	
	NUM I
Start Wird Microsoft Word	N 😼 🕼 🖸 🕄 12:08 PM

Next, Click on Legend Tab, and deselect by Clicking off check mark in Show Legend

Next, remove gridlines. Select Gridlines Tab and *deselect* by Clicking off Value (Y) axis Show Major Gridlines

Click Next>

Spreadsheet Mathematics: Graphing Trigonometric Functions

For Chart Location, Select Save as New Sheet as shown on the following screen.

Now, Click on *Finish*. The following graph appears.

We can now do several steps to format or "dressup" the graph. Now would be a good time to Save your work by Clicking on the **Save** icon

Step 5: Formatting the Graph of y = sin q

Right Click on the graph and a menu called **Format Plot area** will come up. Left Click on **Clear.** This will remove the grey graph background.

Next, Right Click on the x-axis. A Format Axis menu will appear.

Left Click on Format Axis and select Scale Tab. Change the number in the Major Unit box to **30**. Then Click on OK

This is the completed graph for **y** = **sin q**

If you Left Click on the curved graph line, the plotted points will appear. You can then read the Sine Ratio for the degrees from 0° to 360° at 15° intervals.

Answer the following Questions by taking readings from your graph:

- 1. What is the sin ratio for: 45°
 - 180° 165° 225° 270° 330° 360°
- 2. Which angle has the maximum sine ratio?
- 3. Which angle has the minimum sine ratio?
- 4. Which angles have a sine ratio of 0?

Practice Assignment 1:

1. Using the steps as shown in the Example, produce a graph for the trigonometric function:

y = cos q

Using the graph you produce using Chart Wizard, answer the following questions:

- 2. What is the cosine ratio for: 45°
 - 180° 165° 225° 270° 330° 360°
- 5. Which angles have the maximum cosine ratio?
- 6. Which angle has the minimum cosine ratio?
- 7. Which angles have a cosine ratio of 0?

Practice Assignment 2:

1. Using the steps as shown in the Example, produce a graph showing both trigonometric functions, **y** = **sin q** and **y** = **cos q** <u>on the same graph</u>

Using the graph you produce using Chart Wizard, answer the following questions:

- 2. What angles have the same sine and cosine value ?
- 3. At what degree is the cosine value at its maximum and the sine value is at 0?
- 4. At what degree is the cosine value at its minimum and the sine value is at 0?
- 5. At what degree is the sine value at its minimum and the cosine value is at 0?

Practice Assignment 3:

- 1. Using the steps as shown in the Example, produce a graph showing the trigonometric function, $y = 2 \sin q$
- 2. Finally, using Chart Wizard, produce a graph showing both $y = 2 \sin q$ and $y = \sin q$ on the <u>same graph</u>
- 3. By taking readings from your graph, at 30 °, 165° and 270° what can you say is the relationship between the sin values on the two curves.

y = sin 0

Degrees	Radians	y = sin 0
0	0.00	0.0000
15	0.26	0.2588
30	0.52	0.5000
45	0.79	0.7071
60	1.05	0.8660
75	1.31	0.9659
90	1.57	1.0000
105	1.83	0.9659
120	2.09	0.8660
135	2.36	0.7071
150	2.62	0.5000
165	2.88	0.2588
180	3.14	0.0000
195	3.40	-0.2588
210	3.67	-0.5000
225	3.93	-0.7071
240	4.19	-0.8660
255	4.45	-0.9659
270	4.71	-1.0000
285	4.97	-0.9659
300	5.24	-0.8660
315	5.50	-0.7071
330	5.76	-0.5000
345	6.02	-0.2588
360	6.28	0.0000

y = 2 sin 0

Comparing $y = \sin 0$ and $y = 2 \sin 0$

Degrees	Radians	v = sin 0	v = 2 sin 0
0	0.00	0,0000	0,0000
15	0.26	0.2588	0.5176
30	0.20	0.2000	1 0000
45	0.52	0.3000	1 /1/2
40	1.05	0.7071	1.4142
60 75	1.05	0.8660	1.7321
75	1.31	0.9659	1.9319
90	1.57	1.0000	2.0000
105	1.83	0.9659	1.9319
120	2.09	0.8660	1.7321
135	2.36	0.7071	1.4142
150	2.62	0.5000	1.0000
165	2.88	0.2588	0.5176
180	3.14	0.0000	0.0000
195	3.40	-0.2588	-0.5176
210	3.67	-0.5000	-1.0000
225	3.93	-0.7071	-1.4142
240	4.19	-0.8660	-1.7321
255	4.45	-0.9659	-1.9319
270	4.71	-1.0000	-2.0000
285	4.97	-0.9659	-1.9319
300	5.24	-0.8660	-1.7321
315	5.50	-0.7071	-1.4142
330	5.76	-0.5000	-1.0000
345	6.02	-0.2588	-0.5176
360	6.28	0.0000	0.0000

 $y = \cos 0$

Degrees	Radians	y = cos 0	
0	0.00	1.0000	
15	0.26	0.9659	
30	0.52	0.8660	
45	0.79	0.7071	
60	1.05	0.5000	
75	1.31	0.2588	
90	1.57	0.0000	
105	1.83	-0.2588	
120	2.09	-0.5000	
135	2.36	-0.7071	
150	2.62	-0.8660	
165	2.88	-0.9659	
180	3.14	-1.0000	
195	3.40	-0.9659	
210	3.67	-0.8660	
225	3.93	-0.7071	
240	4.19	-0.5000	
255	4.45	-0.2588	
270	4.71	0.0000	
285	4.97	0.2588	
300	5.24	0.5000	
315	5.50	0.7071	
330	5.76	0.8660	
345	6.02	0.9659	
360	6.28	1.0000	

Comparing Sin and Cos ratios

Degrees	Radians	y = sin 0	$y = \cos 0$
0	0.00	0.0000	1.0000
15	0.26	0.2588	0.9659
30	0.52	0.5000	0.8660
45	0.79	0.7071	0.7071
60	1.05	0.8660	0.5000
75	1.31	0.9659	0.2588
90	1.57	1.0000	0.0000
105	1.83	0.9659	-0.2588
120	2.09	0.8660	-0.5000
135	2.36	0.7071	-0.7071
150	2.62	0.5000	-0.8660
165	2.88	0.2588	-0.9659
180	3.14	0.0000	-1.0000
195	3.40	-0.2588	-0.9659
210	3.67	-0.5000	-0.8660
225	3.93	-0.7071	-0.7071
240	4.19	-0.8660	-0.5000
255	4.45	-0.9659	-0.2588
270	4.71	-1.0000	0.0000
285	4.97	-0.9659	0.2588
300	5.24	-0.8660	0.5000
315	5.50	-0.7071	0.7071
330	5.76	-0.5000	0.8660
345	6.02	-0.2588	0.9659
360	6.28	0.0000	1.0000